3.4.22 \(\int \frac {\tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}} \, dx\) [322]

Optimal. Leaf size=41 \[ -\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \tan ^2(e+f x)}}{\sqrt {a-b}}\right )}{\sqrt {a-b} f} \]

[Out]

-arctanh((a+b*tan(f*x+e)^2)^(1/2)/(a-b)^(1/2))/f/(a-b)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 41, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {3751, 455, 65, 214} \begin {gather*} -\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \tan ^2(e+f x)}}{\sqrt {a-b}}\right )}{f \sqrt {a-b}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Tan[e + f*x]/Sqrt[a + b*Tan[e + f*x]^2],x]

[Out]

-(ArcTanh[Sqrt[a + b*Tan[e + f*x]^2]/Sqrt[a - b]]/(Sqrt[a - b]*f))

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 455

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[m
- n + 1, 0]

Rule 3751

Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
 :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[c*(ff/f), Subst[Int[(d*ff*(x/c))^m*((a + b*(ff*x)^n)^p/(c^2
 + ff^2*x^2)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && (IGtQ[p, 0] || EqQ
[n, 2] || EqQ[n, 4] || (IntegerQ[p] && RationalQ[n]))

Rubi steps

\begin {align*} \int \frac {\tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}} \, dx &=\frac {\text {Subst}\left (\int \frac {x}{\left (1+x^2\right ) \sqrt {a+b x^2}} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac {\text {Subst}\left (\int \frac {1}{(1+x) \sqrt {a+b x}} \, dx,x,\tan ^2(e+f x)\right )}{2 f}\\ &=\frac {\text {Subst}\left (\int \frac {1}{1-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b \tan ^2(e+f x)}\right )}{b f}\\ &=-\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \tan ^2(e+f x)}}{\sqrt {a-b}}\right )}{\sqrt {a-b} f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.02, size = 41, normalized size = 1.00 \begin {gather*} -\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \tan ^2(e+f x)}}{\sqrt {a-b}}\right )}{\sqrt {a-b} f} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Tan[e + f*x]/Sqrt[a + b*Tan[e + f*x]^2],x]

[Out]

-(ArcTanh[Sqrt[a + b*Tan[e + f*x]^2]/Sqrt[a - b]]/(Sqrt[a - b]*f))

________________________________________________________________________________________

Maple [A]
time = 0.09, size = 35, normalized size = 0.85

method result size
derivativedivides \(\frac {\arctan \left (\frac {\sqrt {a +b \left (\tan ^{2}\left (f x +e \right )\right )}}{\sqrt {-a +b}}\right )}{f \sqrt {-a +b}}\) \(35\)
default \(\frac {\arctan \left (\frac {\sqrt {a +b \left (\tan ^{2}\left (f x +e \right )\right )}}{\sqrt {-a +b}}\right )}{f \sqrt {-a +b}}\) \(35\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(f*x+e)/(a+b*tan(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/f/(-a+b)^(1/2)*arctan((a+b*tan(f*x+e)^2)^(1/2)/(-a+b)^(1/2))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)/(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(tan(f*x + e)/sqrt(b*tan(f*x + e)^2 + a), x)

________________________________________________________________________________________

Fricas [A]
time = 4.17, size = 193, normalized size = 4.71 \begin {gather*} \left [\frac {\log \left (-\frac {b^{2} \tan \left (f x + e\right )^{4} + 2 \, {\left (4 \, a b - 3 \, b^{2}\right )} \tan \left (f x + e\right )^{2} - 4 \, {\left (b \tan \left (f x + e\right )^{2} + 2 \, a - b\right )} \sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {a - b} + 8 \, a^{2} - 8 \, a b + b^{2}}{\tan \left (f x + e\right )^{4} + 2 \, \tan \left (f x + e\right )^{2} + 1}\right )}{4 \, \sqrt {a - b} f}, \frac {\sqrt {-a + b} \arctan \left (\frac {2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {-a + b}}{b \tan \left (f x + e\right )^{2} + 2 \, a - b}\right )}{2 \, {\left (a - b\right )} f}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)/(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[1/4*log(-(b^2*tan(f*x + e)^4 + 2*(4*a*b - 3*b^2)*tan(f*x + e)^2 - 4*(b*tan(f*x + e)^2 + 2*a - b)*sqrt(b*tan(f
*x + e)^2 + a)*sqrt(a - b) + 8*a^2 - 8*a*b + b^2)/(tan(f*x + e)^4 + 2*tan(f*x + e)^2 + 1))/(sqrt(a - b)*f), 1/
2*sqrt(-a + b)*arctan(2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(-a + b)/(b*tan(f*x + e)^2 + 2*a - b))/((a - b)*f)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\tan {\left (e + f x \right )}}{\sqrt {a + b \tan ^{2}{\left (e + f x \right )}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)/(a+b*tan(f*x+e)**2)**(1/2),x)

[Out]

Integral(tan(e + f*x)/sqrt(a + b*tan(e + f*x)**2), x)

________________________________________________________________________________________

Giac [A]
time = 0.45, size = 35, normalized size = 0.85 \begin {gather*} \frac {\arctan \left (\frac {\sqrt {b \tan \left (f x + e\right )^{2} + a}}{\sqrt {-a + b}}\right )}{\sqrt {-a + b} f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)/(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

arctan(sqrt(b*tan(f*x + e)^2 + a)/sqrt(-a + b))/(sqrt(-a + b)*f)

________________________________________________________________________________________

Mupad [B]
time = 12.34, size = 35, normalized size = 0.85 \begin {gather*} -\frac {\mathrm {atanh}\left (\frac {\sqrt {b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a}}{\sqrt {a-b}}\right )}{f\,\sqrt {a-b}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(e + f*x)/(a + b*tan(e + f*x)^2)^(1/2),x)

[Out]

-atanh((a + b*tan(e + f*x)^2)^(1/2)/(a - b)^(1/2))/(f*(a - b)^(1/2))

________________________________________________________________________________________